Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

نویسندگان

  • Ying-Chao Chou
  • Wen-Lin Yeh
  • Chien-Lin Chao
  • Yung-Heng Hsu
  • Yi-Hsun Yu
  • Jan-Kan Chen
  • Shih-Jung Liu
چکیده

A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon-bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon-bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon-bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon-bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat

The aim of this study was to the effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat.  74 Sprague-Dawley rats were selected and tendon injury was formed in 69 of them. Subsequently, these rats were randomly divided into 8 groups and 5 rats which were without any injuries were chosen as the ...

متن کامل

Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes

Clinically, rotator cuff tear (RCT) is among the most common shoulder pathologies. Despite significant advances in surgical techniques, the re-tear rate after rotator cuff (RC) repair remains high. Insufficient healing capacity is likely the main factor for reconstruction failure. This study reports on a basic fibroblast growth factor (bFGF)-loaded electrospun poly(lactide-co-glycolide) (PLGA) ...

متن کامل

Promoting Diabetic Wound Therapy Using Biodegradable rhPDGF-Loaded Nanofibrous Membranes

The nanofibrous biodegradable drug-loaded membranes that sustainably released recombinant human platelet-derived growth factor (rhPDGF-BB) to repair diabetic wounds were developed in this work.rhPDGF-BB and poly(lactic-co-glycolic acid) (PLGA) were mixed in hexafluoroisopropyl alcohol, followed by the electrospinning of the solutions into biodegradable membranes to equip the nanofibrous membran...

متن کامل

Use of Undifferentiated Cultured Bone Marrow-Derived Mesenchymal Stem Cells for DDF Tendon Injuries Repair in Rabbits: A Quantitative and Qualitative Histopathological Study

Objective- To investigate the effect of intratendinous injection of bMSCs on the rate and extent of tendon healing after primary repair in a rabbit model. Design- Experimental study. Animals- Twenty seven skeletally mature New Zealand white rabbits weighing 1.8- 2.5 kg were used. Twenty rabbits were used as the experimental animals, and seven others were used as a source of bone marrow-derived ...

متن کامل

Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study

BACKGROUND The purpose of this study was to develop novel sandwich-structured nanofibrous membranes to provide sustained-release delivery of vancomycin, gentamicin, and lidocaine for repair of infected wounds. METHODS To prepare the biodegradable membranes, poly(D, L)-lactide-co-glycolide (PLGA), collagen, and various pharmaceuticals, including vancomycin, gentamicin, and lidocaine, were firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016